Code As Performance Interface - A Case Study

Alberto de Campo,

Hannes Hoelzl,

Julian Rohrhuber,

Adrian Vacca Echo Ho Renate Wieser
Les Duchamps / goto10 earweego Academy of Fine Arts
Graz, Austria Cologne, Germany Hamburg, Germany
Amsterdam, Holland Beijing, China

adc@inode.at,
vacca@goto10.org

ABSTRACT

This paper discusses different notions of what styles of inter-
action different electronic music (or more recently, computer
music) instruments afford to performers, and considers in
detail the case of code as the primary performance inter-
face. Rather than attempting a full taxonomy of existing
practices, we describe in detail the strategies developed in
the ensemble we play in, powerbooks unplugged [7].

One concern addressed is the question of who is interested
in which decisions to be made in a musical performance;
composers, performers, and audience may have diverging in-
terests. While code interfaces tend to reduce conventionally
theatrical aspects of music performance (the lack of which
in ’laptop performance’ some consider problematical), we
contend that for audiences mainly concerned with musical
questions, plenty of interesting artistic decisions are made
live, along with new forms of communication which we con-
sider valid objects of interest. In fact, we find that Finally,
shared code reduces the experiential distance between musi-
cians and the audience: Much of what we do when perform-
ing is listening, guessing what might come next, and being
joyfully disappointed.

A performance at NIME by powerbooks unplugged, using
code as interface in the specific ways described, may serve
to demonstrate the issues discussed in this paper.

Keywords

Musical Interfaces, Just In Time Programming, Live Cod-
ing, Realtime Open Source Improvisation

1. INTRODUCTION

Many different approaches to performing have been taken
in the history of electronic music so far:

Electronic instruments closely modeled on acoustic instru-
ments (e.g. MIDI pianos), using similar physical interaction
(e.g. the Ondes Martenot), or - more distantly - touch-
less sensing (Theremin); from a different angle, the ’diffu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIMEO7, New York, NY, USA

Copyright 2007 Copyright remains with the author(s).

ear@earweego.net,
eskimotion6@gmail.com

rohrhuber@uni-
hamburg.de,

re.nate@web.de

sion’ tradition, i.e. interpreting a fixed tape piece by re-
spatialisation, typically with a mixing desk as interface (with
especially early electronic and computer music falling into
the tape music category); playback mechanisms for musical
structures with added ’expression’ controls!. STEIM has
cultivated its own strong tradition, focusing on instrumen-
tal performance by developing idiosyncratic personalized in-
struments in close collaboration with the performers.

While using manual dexterity to its fullest potential for
refinement, there is musical life outside motor skills as well.
New interactive programming environments offer new pos-
sibilities of higher level, and highly computer-specific inter-
faces and interaction modes: One avenue we are exploring
is that of (re-)writing text that describes how sound is to be
generated (i.e. code) in real time. Such an approach unifies
the tradition of algorithmic sound synthesis and composition
with the idea of high-level, discourse-like interaction with
an environment consisting of a text editor, an interpreted
programming language and (not mandatory, but highly de-
sirable) other participants.

Rather than discussing an elaborate taxonomy of these
possibilities, we go into the practice we have developed in
some detail. We hope to show in a performance at NIME
how this style of artistic practice manifests itself musically.

The paper begins with a glance at common models of mu-
sical interfaces, discusses which decisions which participants
find interesting to make in performance, then covers code as
an interface from the practice of powerbooks unplugged.

2. COMMONMODELS OF COMPUTER MU-
SIC INSTRUMENTS

Two models of electronic music instruments are well es-
tablished: the traditional (acoustic) instrumentalist model
and the higher-level control ’conductor’ model. In both
cases, electronic and computer means characteritically al-
low for decoupling between physical control interface and
sound generation.

2.1 The traditional instrumentalist model

In acoustically played music, a performer generates ev-
ery sound by physical energy; in terms of control, a dense
stream of gestures physically creates every detail of every
musical event (in immediate interaction with the physics of
the instrument played) and all its nuances.

! An interesting acoustic variant is the barrel organ, played
with amazing expressivity by Pierre Charial.

Electronic music instruments can follow this model closely,
and some do:

Classic examples are the Theremin and the Ondes Martenot,

but many MIDI instruments adhere to the model very closely
too. Such instruments allow for long-term learning, and
attaining more and more refinement of the embodied fine
motor skills relevant to music (in classical music terms, vir-
tuosity). One can say that the performer is in full control,
and that success depends completely on motor skills.

Such instruments can be discouraging for beginners, such
as the violin, or inviting for easy exploration, such as the
piano. For computer-based instruments, a violin-like steep
initial learning curve does not seem a good idea; the his-
torical rate of development of computers may make the in-
strument technically obsolete (require reimplementation on
newer platforms) before the first performer has ever learned
to play it well.

The large number of musicians and dedicated hobby play-
ers seems to indicate a human tendency to benign addiction
to such motor skills; apart from artistic impulses, one ex-
planation is of course the Flow nature [3] of the experience
of playing music. An interesting connection to obsessive be-
haviour is discussed by Favilla and Cannon in [4], especially
for idiosyncratic self-made electro-acoustic instruments.

Wright in [14] makes a very good case for this approach in
electronic music: Musicians being highly trained to achieve
micro-time articulation (the notion of grooves vs. quantized
music, down randomizing functions to ’humanize timing’)
should also be able to attain this level of expression with
electronic instruments. Especially for metric music (which
Wright is very interested in), any human-computer inter-
faces for music require rather low latency (ideally below
10msec), and as little jitter as possible: one can adapt to
some constant lag, but one cannot learn rhythmic subtlety
if jitter destroys one’s high-precision timing.

A major center of advancement for the performance of ex-
perimental electronic music has been the Studio for Electro-
Instrumental Music (STEIM); Joel Ryan in [10] both reports
on work STEIM has supported in this area, and argues a
more general notion really well: Considering the advanced
and highly refinable motor skills that are characteristic of
the human species, the performance of electronic music ben-
efits enormously from ways to connect ’finger space’ to in-
teresting sound spaces.

Similar arguments for high-resolution ’intimate control’
also made by Wessel and Wright [13] holds just as well for
higher-level control, as follows.

2.2 The Conductor Model

A second starting point for musical performance and con-
trol interfaces is the idea of letting a computer take care of
the more 'mechanical tasks’ of music performance (such as
playing all the events in a fixed composition in the correct
order), while giving the performer control of higher-level pa-
rameters, often considered to be responsible for ’expression’.
The precedent in traditional music practice often given for
this model is the conductor, who only globally shapes what
the instrumentalists play.

One attraction to this model is that uses the computer
as a labor-saving device; thus initial playing may well seem
easy with such a system. We find that while this model has
some ovious attractions, it also has problems:

The idea that a musical performance can be separated into

’just the mechanics’ and ’just the expression’ seems quite
elusive, and runs counter to the experience of playing acous-
tic instruments well. More precisely, the fundamental prob-
lem is how to model expression: the entire range of spon-
taneous expressive behavior a performer/conductor might
want to use would have to be programmatically formalized
beforehand, in order to map an ’expression’ recognized in
the sensor data to the relevant ’expressive’ performance pa-
rameters. If one suddenly has an idea that a specific passage
should be realized differently, that must have been prepared,
or it will be inaccessible.

Secondly, it is not easy to imagine ways to play together
in a group with such an underlying model, it seems rather
solipsistic, if not dictatorial in tendency.

Wessel and Wright [13] aruge that interfaces with suffi-
cient ’control intimacy’ for low-level articulation are also
very useful for higher control, e.g. flying in spaces of musi-
cal processes; Ryan [Territory| addresses similar ideas, e.g.
navigating landscapes of previous performances. Both ar-
gue for potentially unlimited learning of more and more ad-
vanced and subtle skills with such interfaces, i.e. allowing
for the equivalent of virtuosity being attainable in the long
run. Long phases of free exploration (the equivalent of bab-
bling in speech acquisition) help to habituate such skills for
a feeling of intimate embodied knowledge of the instrument.

2.3 Pragmatic Approaches

Many computer/electronic musicians end up using what-
ever is pragmatically simple: affordable controllers, from
simple gamepads to MIDI faderboxes, keyboard/fader com-
binations; ’laptop artists’ are considered problematic by some
when they just sit still, and do only a few mouse-clicks, as
the stereotype goes. This is allegedly ’'boring’ and ’confus-
ing’ for an audience; artists are exhorted to consider ”vi-
sual/corporeal aspects ... to make the performance convinc-
ing for the audience” [11].

We consider this visual entertainment point of view to
be mainly an extra-musical concern; before discussing text
as interfaces, let us consider which intra-musical decisions
artists may make during performances, and how audiences
may relate to them.

3. DECISIONS IN A PERFORMANCE

In music played on acoustic (and electronic, if they fol-
low the same model) instruments, a common factor is the
physical level:

3.1 Physical Micro-decisions

A constant stream of nuanced detail is generated by hands,
mouth, body; there is direct physical coupling between ac-
tion and sound, and potentially a high correlation of visual
and auditory experience. The flow experience performers
may have may communicate well to an audience. How-
ever, there is often a tendency toward exaggeration for show
purposes, histrionics by (rock) guitar solos, classical hero-
pianists, star conductors, and somewhere along this the line,
air guitar championships. 2

3.2 Interpretation of a Given Work

20ne is sometimes reminded of the quote: If you can fake
sincerity, you've got it made. (often attributed to Frank
Zappa, and many others.

On a more musical level of concern, a connoisseur audience
is often interested in interpretive decisions:

A pianist in classical setting makes decisions on details
that bring out the structure and the subjective emotional
meaning of a piece; the ’text’ of the composition itself is
usually not touched. Even if the pianists hands are not
seen, an audience can follow and appreciate these aspects
quite well.

3.3 Improvisation

In many musical cultures, improvisation within given frame-

works is common; this often includes inventing new melodies
on a known (e.g. in Jazz, harmonic) background, showing
virtuosity in fluency of musical ideas; forms of accompani-
ment may be just as sophisticated.

Depending on cultural context, conforming to a highly
detailed 'mood’ of a particular piece may be most desirable
(e.g. in classical Indian music); in other contexts, it may be
creative ways to drastically redefine a trivial known refer-
ence point (e.g. John Coltrane’s reshaping of My Favorite
Things).

3.4 Who decides what?

Generalising dangerously here, composers often display
an interest that performers get to decide rather little (and
some composers even have a reputation for that); indepen-
dently minded musicians may want to make more decisions
themselves, some in preparation, others in the performance
situation; audiences may or may not care how these deci-
sions happen, depending on their level of knowledge of the
music being played.

For well-informed audiences, a better question may be:

3.5 Which aspects of live music are interesting
to follow?

Answers to this question will be highly culture-dependent;
imagine the answers you might get from audiences of a West-
ern classical solo recital; a traditional jazz concert; a free
improv concert; a boy group or a Death Metal concert; a
New Music concert; an academic electronic music concert; a
noise artist club gig; a Gamelan performance in a Javanese
village; and so on.

Here are some terms we would expect to come up in au-
dience answers:

Causality (who does/did what), [8]

Communication (who reacts to what),

Expectation/Surprise (where is the music going),

and one can imagine others.

Note that these topical answers are not necessarily de-
pendent on the presence of visually readable physical in-
struments and associated gestures.

4. CODE AS INTERFACE

The organisation toplap [12] has formulated a manifesto of
live coding; and some of its members are exploring the idea
of live coding as musical performance, to the point of exper-
imenting with regular practice disciplines (Collins, Olofsson,
Mme Bourbaki, and others). [see paper submitted by Collins
at NIME2007]

The authors play in the ensemble powerbooks unplugged,
whose overall concept developed from a few admittedly id-
iosyncratic tenets, formulated as follows:

4.1 PBUP Latento

The laptop is the next guitar, i.e. the new folk instrument
The laptop is a complete instrument as is
The laptop can also be the entire interface

The laptop in its current physicality is best used while it
historically exists - now 2

Code and music belong to everyone

So far, we have found these constraints both liberating
and challenging. While not ruling out more physical inter-
actions with laptops, for this paper we focus on code as the
performance interface of choice.

The music we play is highly communicative group impro-
visation, based on a body of code created in rehearsals and
concerts (collected later), rewritten on the fly, and commu-
nicated back and forth continuously.

We describe here strategies that work well for us; other
live coding practitioners work with different concepts (slub
[6], klippAV [1, 2], and others [12]

4.2 Contextual Considerations

4.2.1 Staging causality

The complaint that laptop music is boring shows that the
stage (with its actors) serves as an interface between music
and audience, which enhances focus. The physical actions of
single musicians serve as easy to read cues. The absence of
synchronous physical gestures in algorithmic music could be
addressed by projecting code; however, this is on a different
level than activity cues. In fact we (players) all listen to the
algorithm like the audience; by contrast, the stage represents
a producer-consumer and performance-perception split.

4.2.2 Audience Immersion

We address this by sitting in the audience space: the
empty stage is a visual cue emphasizing the performers’
immersion in the audience. The activity we perform is
well-known (typing), and audience and performers share the
same bodily posture. The softness of the sounds avoids caus-
ing feelings of forced immersion by acoustic power. The
physical proximity and peculiar weaknesses of the laptop
loudspeakers emphasize the physical reality of the instru-
ment; this is often more difficult with instruments amplified
through loudspeaker systems.

4.2.3 Network and Sharing

Since all members can create sound structures that are
spread over any subset of the laptops used, they are delocal-
ized actors. It is not essential to know who does what; rather
it is all about listening to and understanding the subtleties of
algorithms for everyone. Competence and performance are
delocalized as well; they live in the space between machines,
audience and performers.

3Who knows what portable computers may be like in 20
years?

4.2.4 Fear of Code

Code is still a problem for many people; they seem to
prefer distance from it. This may be based on potential
embarrassment for not being competent at this particular
’specialist knowledge’; often it may also be a variant of the
cliche that intellectual capacities are seen as opposed to per-
ceptual and emotional capacities. Coding as a casual thing
to do in the audience space plays with this barrier, and may
raise interesting questions to consider.

4.3 Just In Time Programming - JITLib

Given our platform of choice SuperCollider3 [5], it is very
easy to write short scripts that create brief sound phrases
or textures (often on the order of 10 to 30 seconds long).
The library JITLib that comes with SC3 provides a number
of elegant constructs for this style (see [9] and the JITLib
documentation). While such a phrase evolves, one can listen
to it, read its code, make changes to it, and replace it with
a new variant at an appropriate moment.*

Some examples with code follow; these are only meant
to convey the flavor and flow of this performance style; full
explanations would exceed the scope of this paper.

4.4 Granular textures

Streams of events in time can be expressed very gener-
ally in SC3 with the Tdef (Task definition) construct, which
keeps tasks organized by name; e.g. a granular texture:

{ ff hatRit
Tdef{“hatRit, £
var fregr = rrand{Z088, 12000);

188 ,.dod+ arg i;
b.oddresses .choose .sendisg " s _new",
"hatriLine", -1, @, A,

Yfreg, fregr * rrand(B.5, 1.5,
hsustain, B.83,

hamp, 1@,
g, @.866
b
(8,825 * {1.82 ** j)i.wait;
EFH
Fr.play;
}

Defining a variant at the same name replaces the old task,

f A natRit
Tdef{“hatRit).setihourve, 1.82);
Tdef{“hatRit).setihrg, B.03);
Tdef{“hatRit, { |e|

var freqr = rrand(2608, 12868);

188 .dof{ arg i;
b.sendM=gl" f=_new",
"hatiline", -1, @, @

1
“freg, fregr * rrand{@.5, 1.53,
“sustain, @.83,
hamp, 18,
“rg, e.rg 7 B.EE6
bH
{8,625 * {e.curve 7 1.82 %)l uait;
i3+
Fl.plag;
}

4This can be seen as a continuation of motivic development
as in western classical music, as a form of genetic algorithms
with the performers’ aesthetic preferences as fitness func-
tions, or as multi-path looped version of the surrealist tech-
nique cadavre exquis.

And one can change variables while a task is running;:

Tdef{“hatRit).set{\ocurve, 1.83).plag;

4.5 Patterns

Keeping patterns around by name works very similar to
Tdefs, with Pdefs (pattern definitions); except one can take
full advantage of the rich library of algorithmic patterns
available in SC3:

Phindef {me Lodu,
Yinstrument, hagrainiline,
Ydegree, Pstutter
Pseq{[2, 2, 3, 2], infl,
Pseqi [
[1, 4, 6], [2, 5, 7], [4, B, 8], [5, 7, 9],
[4, &, 21, [z, 5, 71, [z, 4, &], [1, 2, 5]
1, inf)
}!
hootave, S,
ook, 4,
hamp, [@B.81, ©.885, 8.61] * 2,
“dur, Pzeqf[®.5, 8.25, 8.5, 0.5, 9.5, 8.5, @8.25, 8.5, 0.5], inf),
hsustain, 8.2
Jeplag;

4.6 Continuous Synthesis processes

Continuous sounds are written with nodeproxies, and as
a convenience, these can be written as variables in a special
environment called ProxySpace:

p = ProxySpoce.push;
“end . ploy;

['shd = { Sin0sc.ar{[488, 487] * 8.9, @, 8.2} };

Changing the sound process fades out the old and fades
in the new:

“shd = { Sin0sc.ar{[408, 437] * 8.9, 8, 8.2}
LFPulse.kr{[1, 1.3]1% F;

Sounds can be 'plugged together’ very much like analog
synthesizer modules:

“ctl = { LFPulse.kr{[1, 1.2] * MouseX.kr{1, 38, 13} };
~snd = { SinOsc.or([468, 437] % 8.0, @, B.2) % ~=tl I

4.7 Well-tempered Randomization

Given the need for fast decisions in performance, the rich
implementation of randomness in SC3 is very helpful: Us-
ing random numbers, patterns, decisions, collection meth-
ods, and unit generators, one can delay decisions by making
random first passes, and subsequently fine-tuning sounds in-
crementally very easily.

4.8 History

Out of the desire to make the history of a performance
accessible immediately for shared evolution of musical ideas,
we created a History class. Once History has been started, it
records every code strings that is executed on the machine,
as well as code being sent from the machines of other players,
and keeps them in timed order. Thus a complete script of
a performance can be stored and replayed if desired. A
simple GUI provides access to all code strings since History

has started: Every line represents one code string, with a
time tag since History began, an ID for the author/sender,
and the first line of code.

666

History

Selecting an entry opens a text window and puts the code
into it, so one can begin rewriting.

4.9 More Just In Time GUIs

Task and pattern definitions also have GUI support to
reduce typing latency: TdefAllGui and PdefAllGui provide
names and state information on all present Tdefs and Pdefs.
They can be started and stopped by GUI, one sees whether
a Tdef is empty or not [src], and whether it has an envi-
ronment [env] for variable access or not. Clicking on these
button opens a text window with the relevant code posted,
ready for editing.

O O O TdefAllGui

hatRO | | Zage “ Ehy
hatRit | src | env
highTick _ |pauz| src | env
lows_=2 _ |pauz| src | env
= Low2 _ |pauz| srec | eny
slowPulse| | src | env
i
" —

0 © © PdefAllGui

bazz paus| src | env
hiEq paus| src | enwv
me L ody paus| src | enwv

ting !l:u:lus SrC | enwv

The state of a ProxySpace can be displayed with the Prox-
yMixer class, showing all current audio and control processes
and their playing state, and making the most frequent ad-
justments available, e.g. start, stop, volume mixing, and
output configuration of several processes:

666

¥ existingProxies | reduce | doc |d0u:c:| openEdit |i|

proxyspace:

_ anna play | - —=| pous | send | ed
_ otto play | - —=| pous | send | ed

| out play | 8 —=| pous | send | ed
N tabla [play |- -=| pous | send | ed

Every individual process (a.k.a. NodeProxy) can be dis-
played and edited with a NodeProxyEditor, which automat-
ically creates gui elements for all parameters with defined
ranges:

568 ModeProxyEditor

tablaHi | wutchILI scnpel resetl doc |

| N | tablaHi |stan[- -<| pous | send|

- hitamp 1

- | fregSecale | | 0.8132

- | freqhffset| | 0

- | timeScale [_| 1

- anp i | 0.1
=1 opan L 0

= attack || 0.001

= decay || 0.01

- thump 0.5

- t_trig 0

Y

e —

5. CONCLUSIONS

Considering laptops as full-blown musical instruments cre-
ates interesting new perspectives. Several current computer
music languages offer a multitude of interaction possibili-
ties well worth extended exploration, also for realtime per-
formance. Especially extensible systems allow for creating
support to reduce reaction times (i.e. typing latency), while
still keeping full access to every corner of the current state
open.

Choosing code as an interface is an interesting constraint,
and steers one toward choices one would not easily make
with acoustic instruments. While high-resolution gestural
input is certainly interesting in its own right, the commu-
nicative aspects of a running discourse via shared code, and
the changes such an approach suggests for the performance

situation, creates plenty of musically interesting objects of
attention for audience and performers alike.

6. ACKNOWLEDGMENTS

We would like to thank James McCartney for writing SC3
and making it open source; all the generous contributors to
SC3; the Academy for Media and Arts Cologne sponsor-
ing the Warteraum series; and the Academy for Fine Arts
Hamburg for sponsoring the symposium where toplap was
founded.

7. REFERENCES

[1] N. Collins and F. Olofsson. klippav.org.
http://klippAV.org , 2004-2007.

[2] N. Collins and F. Olofsson. klipp av: Live algorithmic
splicing and audiovisual event capture. Computer
Music Journal, 30(2):8-18, 2006.

[3] M. Czikszentmihalyi. FLOW — The Psychology of
Optimal Experience. Harper Perennial, 1991.

[4] S. Favilla and J. Cannon. Fetish: Bent leather’s
palpable, visceral instruments and grainger.
Contemporary Music Review, 25(1/2):107 117, 2006.

[5] J. McCartney. SuperCollider3.
http://supercollider.sourceforge.net, 2003-2007.

[6] A. McLean and A. Ward. http://slub.org/ .

[7] Powerbooks Unplugged. http://pbup.goto10.oryg .

[8] J. Rohrhuber and A. de Campo. Waiting and
uncertainty in computer music networks. In
Proceedings of the ICMC 2004, Miami, 2004.

[9] J. Rohrhuber and A. de Campo. Algorithms today -
notes on language design for just in time
programming. In Proceedings of the ICMC 2005,
Barcelona, 2005.

[10] J. Ryan. Some remarks on musical instrument design
at steim. Contemporary Music Review, 6(1):3-17,
1991. also available online: http://www.steim.org/
steim/texts. phtml?id=3.

[11] W. Schloss. Using contemporary technology in live
performance: The dilemma of the performer. Journal
of New Music Research, 32:239 — 242, 2003.

[12] Various. Toplap - (temporary...) organisation for the
(proliferation...) of live (art...) programming (note
multiple acronym expansions). http://toplap.org .

[13] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
Music Journal, 26:11 — 22, 2000.

[14] M. Wright. Problems and prospects for intimate and
satisfying sensor-based control of computer sound. In
Proceedings of SIMS 2002, Santa Barbara, 2002.

